0%

ResNeSt回顾

1. ResNest

image-20220509105429462

paper: https://hangzhang.org/files/resnest.pdf

作者讲解:https://www.bilibili.com/video/BV1PV411k7ch

ResNeSt提出了Split-Attention Block模块, 其考虑到组卷积降低计算量、以及通道注意力策略提升跨通道的相互作用,可以理解为ResNeXt和SKNet的结合版。在图像分类,目标检测,目标分割等众多Backbone上有了明显提升。

image-20220509110437806

2. Split-Attention Block

1.先对输入特征,分为k个Cardinal Groups,每个Cardinal Group分为r个radis的子特征
2.对分离的每个组进行 1 x 1 + 3 x 3卷积,得到每个h x w x c的特征
3.对2中得到的特征进行sum操作,得到尺寸为h x w x c的特征
4.对3中特征进行F.adaptive_avg_pool2d操作,得到1 x 1 x c的特征
5.对4中特征,进行两个FC操作,得到1 x 1 x r*c的特征
6.进行r-softmax(对每个1x1xc个特征进行softmax),再分别与r个组进行点乘操作,即为注意力赋值相加
7.与Input进行skip-connect

image-20220509110902453

  • 借鉴ResNeXt模型的思想,将Input Tensor分为K组,记为Cardinal k, 然后将每个Cardinal 拆分为r个子模块, 记为Split r。 整个Resnest Block有G = k x r 组。

  • 每个Split 模块中首先经过1x1、3x3卷积生成通道为c/k的特征图, 然后r个split模块的输出特征图进入Split Attention获得通道加权后特征图,再将各个cardinal的输出特征图concat到一起。

    image-20220509153858954

    split-attention 模块的具体结构如上图所示,主要实现代码如下图所示,有大佬进行了注释。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    """Split-Attention"""

    import torch
    from torch import nn
    import torch.nn.functional as F
    from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU
    from torch.nn.modules.utils import _pair

    __all__ = ['SplAtConv2d']

    class SplAtConv2d(Module):
    """Split-Attention Conv2d
    基数cardinality =groups= 1 groups对应nn.conv2d的一个参数,即特征层内的cardinal组数
    基数radix = 2 用于SplAtConv2d block中的特征通道数的放大倍数,即cardinal组内split组数
    reduction_factor =4 缩放系数用于fc2和fc3之间减少参数量
    """
    def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0),
    dilation=(1, 1), groups=1, bias=True,
    radix=2, reduction_factor=4,
    rectify=False, rectify_avg=False, norm_layer=None,
    dropblock_prob=0.0, **kwargs):
    super(SplAtConv2d, self).__init__()
    # padding=1 => (1, 1)
    padding = _pair(padding)
    self.rectify = rectify and (padding[0] > 0 or padding[1] > 0)
    self.rectify_avg = rectify_avg
    # reduction_factor主要用于减少三组卷积的通道数,进而减少网络的参数量
    # inter_channels 对应fc1层的输出通道数 (64*2//4, 32)=>32
    inter_channels = max(in_channels*radix//reduction_factor, 32)
    self.radix = radix
    self.cardinality = groups
    self.channels = channels
    self.dropblock_prob = dropblock_prob
    # 注意这里使用了深度可分离卷积 groups !=1,实现对不同radix组的特征层进行分离的卷积操作
    if self.rectify:
    from rfconv import RFConv2d
    self.conv = RFConv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
    groups=groups*radix, bias=bias, average_mode=rectify_avg, **kwargs)
    else:
    self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
    groups=groups*radix, bias=bias, **kwargs)
    self.use_bn = norm_layer is not None
    if self.use_bn:
    self.bn0 = norm_layer(channels*radix)
    self.relu = ReLU(inplace=True)
    self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality)
    if self.use_bn:
    self.bn1 = norm_layer(inter_channels)
    self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality)
    if dropblock_prob > 0.0:
    self.dropblock = DropBlock2D(dropblock_prob, 3)
    self.rsoftmax = rSoftMax(radix, groups)

    def forward(self, x):
    # [1,64,h,w] = [1,128,h,w]
    x = self.conv(x)
    if self.use_bn:
    x = self.bn0(x)
    if self.dropblock_prob > 0.0:
    x = self.dropblock(x)
    x = self.relu(x)

    # rchannel通道数量
    batch, rchannel = x.shape[:2]
    if self.radix > 1:
    # [1, 128, h, w] = [[1,64,h,w], [1,64,h,w]]
    if torch.__version__ < '1.5':
    splited = torch.split(x, int(rchannel//self.radix), dim=1)
    else:
    splited = torch.split(x, rchannel//self.radix, dim=1)
    # [[1,64,h,w], [1,64,h,w]] => [1,64,h,w]
    gap = sum(splited)
    else:
    gap = x
    # [1,64,h,w] => [1, 64, 1, 1]
    gap = F.adaptive_avg_pool2d(gap, 1)
    # [1, 64, 1, 1] => [1, 32, 1, 1]
    gap = self.fc1(gap)

    if self.use_bn:
    gap = self.bn1(gap)
    gap = self.relu(gap)
    # [1, 32, 1, 1] => [1, 128, 1, 1]
    atten = self.fc2(gap)
    atten = self.rsoftmax(atten).view(batch, -1, 1, 1)

    # attens [[1,64,1,1], [1,64,1,1]]
    if self.radix > 1:
    if torch.__version__ < '1.5':
    attens = torch.split(atten, int(rchannel//self.radix), dim=1)
    else:
    attens = torch.split(atten, rchannel//self.radix, dim=1)
    # [1,64,1,1]*[1,64,h,w] => [1,64,h,w]
    out = sum([att*split for (att, split) in zip(attens, splited)])
    else:
    out = atten * x
    # contiguous()这个函数,把tensor变成在内存中连续分布的形式
    return out.contiguous()

    class rSoftMax(nn.Module):
    def __init__(self, radix, cardinality):
    super().__init__()
    self.radix = radix
    self.cardinality = cardinality

    def forward(self, x):
    batch = x.size(0)
    if self.radix > 1:
    # [1, 128, 1, 1] => [1, 2, 1, 64]
    # 分组进行softmax操作
    x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
    # 对radix维度进行softmax操作
    x = F.softmax(x, dim=1)
    # [1, 2, 1, 64] => [1, 128]
    x = x.reshape(batch, -1)
    else:
    x = torch.sigmoid(x)
    return x


    image-20220509160325889

    借鉴知乎大佬@Happy的理解示意图。

3. Reference